Correction: Host-Specific Parvovirus Evolution in Nature Is Recapitulated by In Vitro Adaptation to Different Carnivore Species
نویسندگان
چکیده
Canine parvovirus (CPV) emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV), a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that>95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR), the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range.
منابع مشابه
Phylogenetic analysis reveals the emergence, evolution and dispersal of carnivore parvoviruses.
Canine parvovirus (CPV), first recognized as an emerging virus of dogs in 1978, resulted from a successful cross-species transmission. CPV emerged from the endemic feline panleukopenia virus (FPV), or from a closely related parvovirus of another host. Here we refine our current understanding of the evolution and population dynamics of FPV and CPV. By analysing nearly full-length viral sequences...
متن کاملCharacterization of a nonhemagglutinating mutant of mink enteritis virus in China
Parvoviruses are small eukaryotic DNA viruses that infect a variety of animal species, including humans. Canine parvovirus type-2, feline panleukopenia virus and mink enteritis virus are all host-range variants of the carnivore parvovirus subgroup. These viruses could hemagglutinate (HA) swine or rhesus monkey erythrocytes in buffered saline solutions at pHs between 6.0 and 6.8. Here we report ...
متن کاملEvolutionary Reconstructions of the Transferrin Receptor of Caniforms Supports Canine Parvovirus Being a Re-emerged and Not a Novel Pathogen in Dogs
Parvoviruses exploit transferrin receptor type-1 (TfR) for cellular entry in carnivores, and specific interactions are key to control of host range. We show that several key mutations acquired by TfR during the evolution of Caniforms (dogs and related species) modified the interactions with parvovirus capsids by reducing the level of binding. These data, along with signatures of positive select...
متن کاملHigh rate of viral evolution associated with the emergence of carnivore parvovirus.
Canine parvovirus (CPV) is an emerging DNA virus that was first observed to cause disease in canines in 1978 and has since become a ubiquitous pathogen worldwide. CPV emerged from feline panleukopenia parvovirus (FPLV) or a closely related virus, differing at several key amino acid residues. Here we characterize the evolutionary processes underlying the emergence of CPV. Although FPLV has remai...
متن کاملThe role of environments with extreme ecological conditions in the reductive evolutionary development processes of animal
Different groups of animals show phenotypic characters, which have been resulted by the reductive phenomena. The examples are the absence of pigmentation; dwindle of eyes in some cave-living animals, and also the absence of scale in some fishes. These characters are often leaded to evolution of new species with special adaptation that is so called "Regressive evolution". The reductive phenomena...
متن کامل